Epi-Lipschitzian reachable sets of differential inclusions

نویسنده

  • Thomas Lorenz
چکیده

The reachable sets of a differential inclusion have nonsmooth topological boundaries in general. The main result of this paper is that under the well–known assumptions of Filippov’s existence theorem (about solutions of differential inclusions), every epi-Lipschitzian initial compact set K ⊂ RN preserves this regularity for a short time, i.e. θF (t, K) is also epi-Lipschitzian for all small t > 0. The proof is based on Rockafellar’s geometric characterization of epi-Lipschitzian sets and uses a new result about the “inner semicontinuity” of Clarke tangent cone (t, y) 7→ TC θF (t,K)(y) ⊂ R N with respect to both arguments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Approximations, Relaxation, and Optimization of One-Sided Lipschitzian Differential Inclusions in Hilbert Spaces

We study discrete approximations of nonconvex differential inclusions in Hilbert spaces and dynamic optimization/optimal control problems involving such differential inclusions and their discrete approximations. The underlying feature of the problems under consideration is a modified one-sided Lipschitz condition imposed on the right-hand side (i.e., on the velocity sets) of the differential in...

متن کامل

Continuous Interpolation of Solution Sets of Lipschitzian Quantum Stochastic Differential Inclusions

Given any finite set of trajectories of a Lipschitzian quantum stochastic differential inclusion (QSDI), there exists a continuous selection from the complex-valued multifunction associated with the solution set of the inclusion, interpolating the matrix elements of the given trajectories. Furthermore, the difference of any two of such solutions is bounded in the seminorm of the locally convex ...

متن کامل

Compactly Epi-lipschitzian Convex Sets and Functions in Normed Spaces

The concept of compactly epi-Lipschitzian (CEL) sets in locally convex topological spaces was introduced by Borwein and Strojwas [6]. It is an extension of Rockafellar’s concept of epi-Lipschitzian sets [36]. An advantage of the CEL property is that it always holds in finite dimensional spaces and, in contrast to its epi-Lipschitzian predecessor, makes it possible to recapture much of the detai...

متن کامل

Various Lipschitz-like Properties for Functions and Sets I: Directional Derivative and Tangential Characterizations

In this work we introduce for extended real valued functions, defined on a Banach space X, the concept of K directionally Lipschitzian behavior, where K is a bounded subset of X. For different types of sets K (e.g., zero, singleton, or compact), the K directionally Lipschitzian behavior recovers well-known concepts in variational analysis (locally Lipschitzian, directionally Lipschitzian, or co...

متن کامل

SMOOTH NORMAL APPROXIMATIONS OF EPI-LIPSCHITZIAN SUBSETS OF Rn∗

A sequence (Mk) of closed subsets of Rn converges normally to M ⊂ Rn if (sc) M = lim supMk = lim inf Mk in the sense of Painlevé–Kuratowski and (nc) lim sup G(NMk ) ⊂ G(NM ), where G(NM ) (resp., G(NMk )) denotes the graph of NM (resp., NMk ), Clarke’s normal cone to M (resp., Mk). This paper studies the normal convergence of subsets of Rn and mainly shows two results. The first result states t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems & Control Letters

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008